Search

실험실에선 천재, 현실에선 바보… AI 성능 80% 급락의 진실, 해결책은?

실험실에선 천재, 현실에선 바보… AI 성능 80% 급락의 진실
이미지 출처: 이디오그램 생성

KAIST와 LG AI 연구원이 충격적인 연구 결과를 발표했다. 해당 논문에 따르면, AI가 무관한 정보가 섞인 환경에서 최대 80%까지 틀린 답변을 내놓는다는 것이다. 실험실에서는 완벽해 보였던 AI가 실제 사용 환경에서는 심각한 문제를 일으킬 수 있다는 경고다. 



실험실에서만 똑똑한 AI, 현실에서는 혼란 

연구팀은 ‘노이지벤치’라는 새로운 테스트 방법을 만들었다. 기존 AI 테스트가 깨끗하게 정리된 정보만 주었다면, 이번에는 실제 상황처럼 쓸데없는 정보를 섞어서 테스트했다. 예를 들어 질문과 전혀 상관없는 문서를 함께 주거나, 이전 대화 내용을 뒤섞거나, 정답처럼 보이지만 사실은 틀린 정보를 제공했다. 

결과는 충격적이었다. 구글의 제미나이 2.5 프로는 깨끗한 환경에서 77.8%의 정확도를 보였지만, 헷갈리는 정보가 섞이자 48%로 떨어졌다. 더 심각한 경우도 있었다. 딥시크 AI 모델은 정확도가 무려 80% 이상 떨어져서 사실상 사용할 수 없는 수준이 됐다. 이는 AI가 겉으로는 관련 있어 보이는 틀린 정보에 쉽게 속는다는 뜻이다. 

더 놀라운 건 악의적인 공격이 없어도 문제가 생긴다는 점이다. 그냥 무관한 문서나 대화 기록만 섞여도 AI의 판단력이 크게 흐려졌다. 제미나이 2.5 프로는 편향을 측정하는 테스트에서 무작위로 섞인 정보 때문에 정확도가 94%에서 60%로 급락했다. 연구팀은 이를 일반적인 노이즈만으로도 AI의 안전장치가 무너질 수 있다는 증거라고 설명했다. 



AI에게 도구를 주면 오히려 역효과 

연구팀은 AI에게 검색 기능이나 계산기 같은 도구를 제공하는 방식도 테스트했다. 보통 이런 도구들은 AI 성능을 높여준다고 알려져 있다. 실제로 깨끗한 환경에서는 도구가 도움이 됐다. 하지만 쓸데없는 정보가 섞인 환경에서는 오히려 독이 됐다. 도구를 사용한 AI가 기본 AI보다 더 나쁜 성능을 보인 것이다. 

이유는 간단하다. AI는 도구가 제공하는 정보를 믿도록 설계되어 있다. 그래서 잘못된 정보가 섞여 있어도 그대로 받아들인다. 게다가 AI가 여러 단계를 거쳐 문제를 해결하다 보면, 초반에 잘못 받아들인 정보가 다음 단계로 계속 전달되면서 오류가 눈덩이처럼 커진다. 여기에 AI가 엉뚱한 정보 때문에 도구를 잘못 선택해서 쓸데없는 정보를 더 많이 가져오는 악순환까지 생긴다. 

연구팀은 “도구는 깨끗한 환경에서는 좋지만, 노이즈가 있는 환경에서는 AI가 쓸데없는 정보를 너무 많이 가져다 쓰면서 오히려 더 취약해진다”고 지적했다. 앞으로 AI 시스템은 잘못된 정보를 걸러낼 수 있는 장치가 꼭 필요하다는 설명이다. 



새로운 학습법으로 성능 3배 향상 

연구팀은 ‘레어(RARE)’라는 새로운 학습 방법을 제안했다. 기존 방식은 AI가 정답을 맞췄는지만 평가했다. 하지만 레어는 AI가 답을 찾아가는 과정 자체를 평가한다. AI가 쓸데없는 정보 속에서 진짜 필요한 정보를 잘 찾아냈는지를 보고 점수를 준다는 뜻이다. 

실험 결과는 놀라웠다. 한 모델의 경우 기존 방식으로는 38% 정확도였지만, 레어를 적용하자 55%로 올라갔다. 더 극적인 경우도 있었다. 원래 6%밖에 못 맞추던 모델이 레어를 쓰자 25%까지 올라가면서 무려 300% 이상 개선됐다. 

레어가 효과적인 이유는 명확했다. 학습 과정을 분석해 보니, 레어는 AI가 쓸데없는 정보에 혼란스러워하는 비율을 계속 낮췄다. 동시에 정답률도 올라가서, 결과만 보고 학습한 AI보다 최종 성능이 훨씬 좋았다. 연구팀은 “앞으로 AI를 학습시킬 때는 정답만이 아니라 생각하는 과정 자체를 평가해야 한다”고 강조했다. 



많이 생각한다고 좋은 게 아니다 

연구팀은 놀라운 발견을 했다. 보통은 AI가 더 오래 생각할수록 정확도가 높아진다고 여겨진다. 하지만 쓸데없는 정보가 섞인 환경에서는 정반대였다. AI가 생각을 많이 할수록 오히려 정확도가 떨어졌다. 노이즈를 더 오래 분석할수록 잘못된 해석을 하게 되는 것이다. 

또 다른 발견은 쓸데없는 정보가 많을수록 AI가 점점 더 확신 없는 답변을 한다는 점이다. 연구팀이 헷갈리는 정보를 0개에서 10개까지 늘려가며 실험한 결과, 정보가 많아질수록 AI의 불확실성 지표가 계속 올라갔다. AI가 점점 더 혼란스러워한다는 뜻이다. 

가장 흥미로운 건 AI가 어디에 집중하는지를 분석한 결과다. 연구팀은 AI가 정보를 처리할 때 어떤 부분에 주목하는지 측정했다. 틀린 답을 낸 AI는 쓸데없는 정보에 과도하게 집중했다. 반면 올바른 답을 낸 AI는 그런 정보를 적게 봤다. 이는 AI가 방해 정보를 걸러내지 못하고 그대로 따라간다는 증거다. 

연구팀은 또한 헷갈리는 정보와 질문이 비슷해 보일수록 AI가 더 오래 생각하지만 정확도는 떨어진다는 사실을 발견했다. AI가 관련성을 확인하려고 애쓰지만, 결국 쓸데없는 정보에 속아 넘어가는 것이다. 흥미롭게도 AI의 답변 길이는 방해 정보의 길이와 거의 관계가 없었다. 이는 AI가 단순히 입력이 길어서가 아니라, 헷갈리는 내용 때문에 혼란스러워한다는 뜻이다. 



AI 개발 방향을 바꿔야 할 때 

이번 연구는 AI 업계에 중요한 메시지를 던진다.

첫째, 실험실 테스트만으로는 AI의 진짜 능력을 알 수 없다. 깨끗한 환경에서 높은 점수를 받았다고 해서 실제로도 잘 작동한다는 보장이 없다. 특히 병원이나 금융회사처럼 중요한 곳에서 AI를 쓸 때는 노이즈에 강한지 반드시 확인해야 한다. 

둘째, AI를 단순히 크게 만드는 것만으로는 한계가 있다. 연구팀이 여러 크기의 AI를 테스트한 결과, 크기가 커질수록 노이즈에 조금 더 강해지긴 했지만 그 효과가 크지 않았다. 특히 일정 크기 이상부터는 개선 효과가 거의 없었다. 이는 크기를 키우는 것보다 잘못된 정보를 걸러내는 능력을 키우는 게 더 중요하다는 뜻이다. 

셋째, 프롬프트를 잘 작성하거나 정보를 잘 정리하는 기존 방법들도 큰 도움이 안 됐다. 연구팀이 여러 최신 기법을 시험했지만, 노이즈 환경에서는 효과가 거의 없었다. 이런 기법들도 결국 AI에 의존하다 보니 똑같이 노이즈에 취약했다. 

넷째, 한국 AI 연구진의 성과가 주목받고 있다. KAIST와 LG AI 연구원이 만든 이번 해결책은 간단하면서도 효과적이어서, 전 세계 AI 개발에 널리 쓰일 가능성이 크다. 이는 한국이 AI 기술을 그냥 쓰기만 하는 게 아니라 직접 만들고 개선하는 단계에 올라섰다는 증거다. 



FAQ (※ 이 FAQ는 본지가 리포트를 참고해 자체 작성한 내용입니다.) 

Q1. 노이지벤치가 기존 AI 테스트와 어떻게 다른가요? 

A. 기존 테스트는 깨끗하게 정리된 정보만 줘서 AI가 실제보다 더 똑똑해 보이게 만들었습니다. 노이지벤치는 실제 상황처럼 무관한 문서, 엉뚱한 대화 기록, 헷갈리는 정보를 섞어서 AI의 진짜 실력을 측정합니다. 이를 통해 AI가 실험실이 아닌 현실에서 얼마나 제대로 작동하는지 알 수 있습니다. 

Q2. 레어라는 새 학습법은 어떻게 AI를 개선하나요? 

A. 레어는 AI가 정답을 맞췄는지만 보는 게 아니라, 답을 찾는 과정 자체를 평가합니다. 쓸데없는 정보 속에서 필요한 정보를 제대로 찾아냈을 때 보상을 줘서, AI가 방해 정보를 걸러내고 핵심만 보도록 가르칩니다. 실험에서 일부 AI는 이 방법으로 정확도가 3배 이상 올라갔습니다. 

Q3. 일반 사용자에게 어떤 의미가 있나요? 

A. 지금 쓰는 AI 챗봇이 복잡한 상황에서 생각보다 훨씬 많이 틀릴 수 있다는 뜻입니다. 특히 여러 정보를 종합해야 하거나, 대화가 길어지거나, 비슷해 보이지만 틀린 정보가 섞여 있을 때 AI가 엉뚱한 답을 할 가능성이 큽니다. 중요한 결정을 내릴 때는 AI 답변을 맹신하지 말고 반드시 확인해야 합니다. 



기사에 인용된 논문 원문은 arXiv에서 확인할 수 있다. 

리포트명: Lost in the Noise: How Reasoning Models Fail with Contextual Distractors 

이미지 출처: 이디오그램 생성 

해당 기사는 챗GPT와 클로드를 활용해 작성되었습니다. 




실험실에선 천재, 현실에선 바보… AI 성능 80% 급락의 진실, 해결책은? - AI매터스